CAT #: 91220009
LymphoTrack® Dx IGK Assay Kit A - MiSeqTM
Intended Use
The LymphoTrack Dx IGK Assay for the Illumina MiSeq is an in vitro diagnostic product intended for next-generation sequencing (NGS) based determination of the frequency distribution of IGK gene rearrangements in patients suspected with having lymphoproliferative disease. This assay aids in the identification of lymphoproliferative disorders.
Product Details
-
Summary and Explanation of the Test
This LymphoTrack® Dx IGK Assay – MiSeq® represents a significant improvement over existing clonality assays using fragment analysis, as it efficiently detects the majority of IGK gene rearrangements using a single multiplex master mix and, at the same time, identifies the DNA sequence specific for each clonal gene rearrangement. Therefore, this assay has two important and complementary uses: it both aids in the detection of initial clonal populations as well as identifies the sequence information required to track those clones in subsequent samples.
Our single multiplex master mix for IGK targets the Vк-Jк, the Vк-Kde, and the INTR-Kde gene rearrangements described in lymphoid malignancies. Primers included in the master mixes are designed with Illumina® adapters and 8 (Kit A) – 24 (Panel) indices. This assay allows for a one-step PCR reaction and pooling of amplicons from several different samples and targets (generated with other LymphoTrack Dx Assays for the MiSeq, sold separately), onto one MiSeq flow cell allowing for up to 24 samples per target to be analyzed in parallel in a single run.
The associated LymphoTrack Dx Software – MiSeq provides direct interpretation of the data generated from these assays via a simple and streamlined method of analysis and visualization of data. By following the guidelines provided in the IFU, sample results summarized in the software can be easily interpreted for the presence or absence of clonality. Always interpret the results of molecular clonality tests in the context of clinical, histological, and immunophenotypic data.
Positive and negative controls for clonality are included in the kit.
Note: For a more thorough explanation of the locus and the targeted sequencing strategy, please refer to Principle of Immunoglobulin and T Cell Receptor Gene Rearrangement.1
-
Principles of the Procedure
Polymerase Chain Reaction (PCR)
PCR assays are routinely used for the identification of clonal B- and T-cell populations. These assays amplify the DNA between primers that target the conserved VH regions and the conserved JH regions of antigen receptor genes. These conserved regions, where primers target, lie on either side of an area where programmed genetic rearrangements occur during the maturation of all B and T lymphocytes. Different populations of the B and T lymphocytes arise as a result of these genetic rearrangements.
The antigen receptor genes that undergo rearrangements are the immunoglobulin heavy chain (IGH) and light chain loci (IGK and IGL) in B-cells, and the T-cell receptor gene loci (TRA, TRB, TRG, and TRD) in T-cells. Each B- and T-cell has one or two productive V – J rearrangements that are unique in both length and sequence. Therefore, when DNA from a normal or polyclonal population is amplified using DNA primers that flank the V-J region, amplicons that are unique in both sequence and length, reflecting the heterogeneous population, are generated. In some cases, where lymphocyte DNA is not present, no amplicons will be generated. For samples containing IGH clonal populations, the yield is one or two prominent amplified products of the same length and sequence that are detected with significant frequency of occurrence, within a diminished polyclonal background amplified at a lower frequency.
Amplicon Purification
PCR amplicons are purified to remove excess primers, nucleotides, salts, and enzymes using the Agencourt® AMPure® XP system. This method utilizes solid-phase reversible immobilization (SPRI) paramagnetic bead technology for high-throughput purification of PCR amplicons. Using an optimized buffer, PCR amplicons that are 100 bp or larger are selectively bound to paramagnetic beads, while contaminants such as excess primers, primer dimers, salts, and unincorporated dNTPs are washed away. Amplicons can then be eluted and separated from the paramagnetic beads resulting in a more purified PCR product for downstream analysis and amplicon quantification.
Amplicon Quantification
Purified amplicons are quantified using the KAPA™ Library Quantification Kits for Illumina platforms. Purified and diluted PCR amplicons and a set of six pre-diluted DNA standards are amplified by quantitative (qPCR) methods, using the KAPA SYBR® FAST qPCR Master Mix and primers. The primers in the KAPA kit target Illumina P5 and P7 flow cell adapter oligo sequences.
The average Ct score for the pre-diluted DNA Standards are plotted against log10 to generate a standard curve, which can then be used to calculate the concentration (pM) of the PCR amplicons derived from sample DNA. Calculating the concentration of PCR amplicons allows equal amplicon representation in the final pooled library that is loaded onto the MiSeq for sequencing.
Next-Generation Sequencing (NGS)
Sanger sequencing methods represent the most popular in a range of ‘first-generation’ nucleic acid sequencing technologies. Newer methods, which leverage massively parallel sequencing approaches, are often referred to as next-generation sequencing (NGS). NGS technologies can use various combination strategies of template preparation, sequencing, imaging, and bioinformatics for genome alignment and assembly.
NGS technologies used in this product rely on the amplification of genetic sequences using a series of consensus forward and reverse primers that include adapter and index tags. Amplicons generated with the LymphoTrack Dx master mixes are quantified, pooled, and loaded onto a flow cell for sequencing with an Illumina MiSeq sequencing platform. Specifically, the amplified products in the library are hybridized to oligonucleotides on a flow cell and are amplified to form local clonal colonies (bridge amplification). Four types of reversible terminator bases (RT-bases) are added, and the sequencing strand of DNA is extended one nucleotide at a time. To record the incorporation of nucleotides, a CCD camera takes an image of the light emitted when fluorescently labeled nucleotides are added to the sequencing strand. A terminal 3’ blocker is added after each cycle of the sequencing process and any unincorporated nucleotides are removed prior to the addition of four new RT-bases.
Multiplexing Amplicons
This product was designed to allow for two different levels of multiplexing in order to reduce costs and time for laboratories. The first level of multiplexing originates from the multiple indices that are provided with the assays, up to 24. Each of these 24 indices acts as a unique barcode that allows amplicons from individual samples to be pooled together after PCR amplification to generate the sequencing library. Later, the resulting sequences can be sorted by the bioinformatics software to identify those that originated from an individual sample.
The second level of multiplexing originates from the ability of the accompanying software to sort sequencing data by both index and target. This allows amplicons generated with targeted primers (even those tagged with the same index) to be pooled together to generate the library to be sequenced on a single flow cell. An example would be to sequence a combination of products from several Invivoscribe LymphoTrack Dx MiSeq Assay kits such as IGHV Leader, IGH FR1, IGH FR2, IGH FR3, IGK, and TRG together. When multiplexing amplicons of different gene targets it is important to use the appropriate sequencing chemistry. The number of sequencing cycles must be sufficient to sequence the largest amplicon in the multiplex. For example, when multiplexing a combination of IGH FR1, IGH FR2, IGH FR3, IGK, and TRG amplicons together, the MiSeq v2 (500 cycle) or v3 (600 cycle) sequencing kit should be used. When multiplexing any of these amplicons together with IGHV Leader, the MiSeq v3 (600 cycle) sequencing kit should be used. When multiplexing only IGH FR3 and TRG amplicons together, which both have shorter amplicon sizes, MiSeq v2 (300 or 500 cycle) sequencing kits can be used, but the cycle settings need to be adjusted in the sample sheet.
The number of samples that can be multiplexed onto a single flow cell is also dependent on the flow cell that is utilized. Illumina’s standard flow cells (MiSeq v3) can generate 20-25 million reads. To determine the number of reads per sample, the total number of reads for the flow cell should be divided by the number of samples that will be multiplexed, and the number of reads for each sample should be sufficient for valid interpretation.
-
Specimen Requirements
- This assay tests extracted and purified genomic DNA. DNA must be quantified with a method specific for double stranded DNA (dsDNA) and free of inhibitors of PCR amplification.
- Resuspend DNA in an appropriate solution such as 0.1X TE (1 mM Tris-HCl, 0.1 mM EDTA, pH 8.0, prepared with molecular biology grade water) or molecular biology grade water alone.
- The minimum input quantity is 50 ng of high quality DNA.
References
1. Miller JE. (2013) Molecular Genetic Pathology (2nd Edition., sections 30.2.7.13 and 30.2.7.18).
Disclaimer
These are in vitro diagnostic products and available in regions that accept CE-IVD products.
Legal Notice
This product is covered by one or more patents and patent applications owned by or exclusively licensed to Invivoscribe, Inc., including United States Patent Number 7785783, United States Patent Number 8859748, United States Patent Number 10280462, European Patent Number EP 1549764B1 (validated in 16 countries, and augmented by related European Patents Numbered EP2418287A3 and EP 2460889A3), Japanese Patent Number JP04708029B2, Japanese Patent Application Number 2006-529437, Brazil Patent Application Number PI0410283.5, Canadian Patent Number CA2525122, Indian Patent Number IN243620, Mexican Patent Number MX286493, Chinese Patent Number CN1806051, and Korean Patent Number 101215194.
Use of this product may require nucleic acid amplification methods such as Polymerase Chain Reaction (PCR). Any necessary license to practice amplification methods or to use reagents, amplification enzymes or equipment covered by third party patents is the responsibility of the user and no such license is granted by Invivoscribe, Inc., expressly or by implication.
©2024 Invivoscribe, Inc. All rights reserved. The trademarks mentioned herein are the property of Invivoscribe, Inc. and/or its affiliates, or (as to the trademarks of others used herein) their respective owners.
ILLUMINA® and MISEQTM are registered trademarks of Illumina, Inc.