Accelerate Drug Development

State-of-the-art multiparametric flow cytometry (MFC) assays are highly sensitive, fast and cost-effective. Our internationally harmonized MFC assays are designed based on 2018 ELN MRD Working Party Consensus,⁸ 2006 Bethesda Consensus⁹ and 2017 WHO Classification Guidance.¹⁰

Our MFC services provide powerful analytic tools to:

Predict therapy efficacy for program prioritization

Expedite clinical trials by serving as surrogate endpoints

Stratify patients for enrollment based on immunophenotypic profiles

by monitoring response

LabPMM[®] Global Network

The Laboratory for Personalized Molecular Medicine® (LabPMM®) offers standardized testing of novel and proprietary biomarkers across an international network of clinical labs.

*invivoscribe

Global Reach Fast-track clinical trial enrollment using the LabPMM network to provide internationally standardized testing with CLIA, CAP and ISO 15189 certifications.

Regulatory Expertise

Our experienced team has over 50 product registrations and companion diagnostic approvals in the US, EU, and Japan.

Custom Product Development

Leverage nearly 30 years of assay development experience to accelerate drug approvals. Custom assays are designed and manufactured under an ISO certified quality management system.

Talk to our scientists to learn more: invivoscribe.com/contact

LabPMM. LLC

10222 Barnes Canyon Rd, Bldg. 1 | San Diego | CA 92121 | US **Phone:** +1 858.224.6650 | **Fax:** +1 858.224.6655 **Email:** support@labpmm.com

LabPMM, GmbH

Zeppelinstraße 1 | 85399 Hallbergmoos | Germany **Phone:** +49 (0) 89 904299800 | **Fax:** +49 (0) 89 92185748 **Email:** inquiry@invivoscribe.com

LabPMM, GK

Life Science & Environment Research Center (LiSE) 4th Floor 3-25-13 Tonomachi | Kawasaki-ku Kawasaki-shi | Kanagawa 210-0821 | Japan **Phone:** +81 (0)44 281.1500 | **Fax:** +81 (0)3 6745.9346 **Email:** services@labpmm.co.jp

Invivoscribe Diagnostic Technologies (Shanghai) Co., Ltd.

Unit 6302, #6 Bldg., 338 Jia Li Lue Road | Zhangjiang Hi-Tech Pa Pu Dong District | 201203 Shanghai | China Phone: +86 21 6162 9669 Email: sales@invivoscribe.com

*invivoscribe

GLOBALLY STANDARDIZED MULTIPARAMETRIC FLOW CYTOMETRY ASSAYS

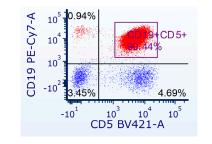
Identify, Stratify and Monitor Hematologic Malignancies

LabPMM an [®]invivoscribe company

A CLIA-certified/CAP Accredited International Laboratory Network

Diagnosis and Stratification

Hematologic malignancies (HMs) account for approximately 6.5% of all cancers, and are the fourth most frequently diagnosed cancer in economically developed countries.^{1,2} Over the past decade, the number of clinical trials targeting HMs has increased at a rapid rate,³ perpetually changing the diagnostic and therapeutic paradigm.


Hematolymphoid Screening Panel

A comprehensive approach to evaluate bone marrow and peripheral blood for hematolymphoid malignancies.

Provides a wide array of applications due to its comprehensive biomarker selection

Evaluate Acute Leukemia, plasma cell dyscrasias, NK, B- and T-cell disorders

Biomarkers in the Hematolymphoid Screening Panel			
CD2	CD3	CD4	
CD5	CD7	CD8	
CD10	CD11b	CD13	
CD14	CD15	CD16	
CD19	CD20	CD23	
CD33	CD34	CD38	
CD45	CD56	CD57	
CD64	CD71	CD117	
CD123	HLA-DR	Карра	
Lambda	TCR Gamma/Delta		

Abnormal B-cells co-expressing T-cell antigen CD5 with CD19.

References

- 1. Batista, JL et al. (2017). Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_29
- 2. Keykhaei, M et al. *Exp Hematol Oncol* 10, 11 (2021). https://doi.org/10.1186/s40164-021-00198-2 3. Hematologic Cancer Incidence, Survival, and Prevalence. USCS Data Brief, no. 30.
- Atlanta, GA: Centers for Disease Control and Prevention, USCS Uata Brief, no. 30. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2022. https://www.cdc.gov/cancer/uscs/pdf/USCS-Data Brief-No30-September2022-h.pdf

MRD as a Surrogate Endpoint

While the overall incidence of leukemia has declined, rates of Acute Myeloid Leukemia (AML) and Chronic Lymphocytic Leukemia (CLL) are increasing, accounting for nearly 40% of total leukemia cases worldwide.⁴ Fortunately, a plethora of agents have recently entered the market, some targeting specific mutations or cell survival signal pathways⁵ and other strategies using CAR-T cells⁶ and immune checkpoint inhibitors⁷–all of which require confirmation of treatment response.

AML MRD Assay

Use of a LAIP-based DfN approach and an extensive selection of antibodies, including a standardized 12-color panel, enables immunophenotypic profiling with unparalleled specificity.

Characterize and monitor MRD populations to 0.01%
Predict treatment outcomes and use as a potential primary end point in clinical trials

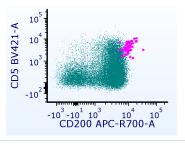
Biomarkers in the AML MRD Assay			
CD2	CD4	CD5	
CD7	CD11b	CD13	
CD14	CD15	CD16	
CD19	CD33	CD34	
CD36	CD38	CD45	
CD56	CD64	CD117	
CD123	HLA-DR	7AAD	

AML MRD population (LAIP) is gated by choosing combinations that make aberrant populations identifiable and trackable based on DfN.

Y Dong et al. Exp Hematol Oncol 9, 14 (2020). https://doi.org/10.1186/s40164-020-00170-6
S Winer et al. Ther Adv Hematol. 2019;10: 2040620719860645.
QS Wang et al. Mol Ther. 2015;23:184-91.
N Daver et al. Cancer Discov. 2019;9:370-83
& GL Schuurhuis et al. Blood 131(12):1275 1291 (2018)

9. BL Wood et al. Cytometry B: Clin. Cytom. 72(S1), S14 S22 (2007)

Prognostication and Tracking


Globally, CLL has increased by approximately 7% over the past 30 years, with a higher incidence among men and adults over 65.^{4,11} Furthermore, CLL is the most prevalent type of leukemia, comprising of 25% – 30% of all leukemias in Western populations.¹

CLL MRD Assay

An extensive 11-color panel targeting 12 specific biomarkers, depicts clear separation of CLL cells from other B-lineage cells.¹²⁻¹⁴ Designed to work with peripheral blood and bone marrow specimens.

- Scharacterize aberrant cell population by MFC
- Detect and track residual disease to 0.005%
- Assess therapeutic response and use as a surrogate endpoint to accelerate approvals

Biomarkers in the CLL MRD Assay			
CD3	CD5	CD19	
CD20	CD22	CD40	
CD43	CD79b	CD81	
CD200	7AAD	CD38	

Identification of a CLL MRD population in a scatter plot indicating CD5 and CD200 antigen expression.

SH Swerdlow et al., WHO Classification of Tumors, (Revised 4th Edition) IARC: Lyon, 421 (2017)
Y Ou et al. Frontiers in Oncology https://doi.org/10.3389/fonc.2022.840616

 WG Wierda et al. Leukemia. 2021; 35:3059–3072. https://doi.org/10.1038/s41375-021-01241-1
AC Rawstron et al. Leukemia. 2016; Apr;30(4):929–36. doi: 10.1038/leu.2015.313. Epub 2015 Dec 7.

14. AC Rawstron et al. Leukemia. 2013 Jan;27(1):142-9. doi: 10.1038/leu.2012.216. Epub 2012 Jul 31.